Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells.

Identifieur interne : 001F82 ( Main/Exploration ); précédent : 001F81; suivant : 001F83

Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells.

Auteurs : Hiroshi Yoda [Japon] ; Yoshinobu Hiroi ; Hiroshi Sano

Source :

RBID : pubmed:16844838

Descripteurs français

English descriptors

Abstract

Programmed cell death plays a critical role during the hypersensitive response in the plant defense system. One of components that triggers it is hydrogen peroxide, which is generated through multiple pathways. One example is proposed to be polyamine oxidation, but direct evidence for this has been limited. In this article, we investigated relationships among polyamine oxidase, hydrogen peroxide, and programmed cell death using a model system constituted of tobacco (Nicotiana tabacum) cultured cell and its elicitor, cryptogein. When cultured cells were treated with cryptogein, programmed cell death occurred with a distinct pattern of DNA degradation. The level of hydrogen peroxide was simultaneously increased, along with polyamine oxidase activity in apoplast. With the same treatment in the presence of alpha-difluoromethyl-Orn, an inhibitor of polyamine biosynthesis, production of hydrogen peroxide was suppressed and programmed cell death did not occur. A gene encoding a tobacco polyamine oxidase that resides in the apoplast was isolated and used to construct RNAi transgenic cell lines. When these lines were treated with cryptogein, polyamines were not degraded but secreted into culture medium and hydrogen peroxide was scarcely produced, with a concomitant suppression of cell death. Activities of mitogen-activated protein kinases (wound- and salicylic acid-induced protein kinases) were also suppressed, indicating that phosphorylation cascade is involved in polyamine oxidation-derived cell death. These results suggest that polyamine oxidase is a key element for the oxidative burst, which is essential for induction of programmed cell death, and that mitogen-activated protein kinase is one of the factors that mediate this pathway.

DOI: 10.1104/pp.106.080515
PubMed: 16844838
PubMed Central: PMC1557616


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells.</title>
<author>
<name sortKey="Yoda, Hiroshi" sort="Yoda, Hiroshi" uniqKey="Yoda H" first="Hiroshi" last="Yoda">Hiroshi Yoda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan. h-yoda@bs.naist.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192</wicri:regionArea>
<wicri:noRegion>Nara 630-0192</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hiroi, Yoshinobu" sort="Hiroi, Yoshinobu" uniqKey="Hiroi Y" first="Yoshinobu" last="Hiroi">Yoshinobu Hiroi</name>
</author>
<author>
<name sortKey="Sano, Hiroshi" sort="Sano, Hiroshi" uniqKey="Sano H" first="Hiroshi" last="Sano">Hiroshi Sano</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16844838</idno>
<idno type="pmid">16844838</idno>
<idno type="doi">10.1104/pp.106.080515</idno>
<idno type="pmc">PMC1557616</idno>
<idno type="wicri:Area/Main/Corpus">002096</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002096</idno>
<idno type="wicri:Area/Main/Curation">002096</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002096</idno>
<idno type="wicri:Area/Main/Exploration">002096</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells.</title>
<author>
<name sortKey="Yoda, Hiroshi" sort="Yoda, Hiroshi" uniqKey="Yoda H" first="Hiroshi" last="Yoda">Hiroshi Yoda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan. h-yoda@bs.naist.jp</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192</wicri:regionArea>
<wicri:noRegion>Nara 630-0192</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hiroi, Yoshinobu" sort="Hiroi, Yoshinobu" uniqKey="Hiroi Y" first="Yoshinobu" last="Hiroi">Yoshinobu Hiroi</name>
</author>
<author>
<name sortKey="Sano, Hiroshi" sort="Sano, Hiroshi" uniqKey="Sano H" first="Hiroshi" last="Sano">Hiroshi Sano</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algal Proteins (MeSH)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Apoptosis (physiology)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Free Radical Scavengers (metabolism)</term>
<term>Fungal Proteins (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>MAP Kinase Signaling System (MeSH)</term>
<term>Mitogen-Activated Protein Kinases (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases Acting on CH-NH Group Donors (genetics)</term>
<term>Oxidoreductases Acting on CH-NH Group Donors (physiology)</term>
<term>RNA Interference (MeSH)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Respiratory Burst (physiology)</term>
<term>Tobacco (enzymology)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apoptose (physiologie)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Mitogen-Activated Protein Kinases (métabolisme)</term>
<term>Oxidoreductases acting on CH-NH group donors (génétique)</term>
<term>Oxidoreductases acting on CH-NH group donors (physiologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Piégeurs de radicaux libres (métabolisme)</term>
<term>Protéines d'algue (MeSH)</term>
<term>Protéines fongiques (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stimulation du métabolisme oxydatif (physiologie)</term>
<term>Système de signalisation des MAP kinases (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tabac (enzymologie)</term>
<term>Tabac (génétique)</term>
<term>Tabac (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oxidoreductases Acting on CH-NH Group Donors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Free Radical Scavengers</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Oxidoreductases Acting on CH-NH Group Donors</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Algal Proteins</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oxidoreductases acting on CH-NH group donors</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Mitogen-Activated Protein Kinases</term>
<term>Piégeurs de radicaux libres</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apoptose</term>
<term>Oxidoreductases acting on CH-NH group donors</term>
<term>Stimulation du métabolisme oxydatif</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Apoptosis</term>
<term>Respiratory Burst</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cells, Cultured</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>MAP Kinase Signaling System</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules cultivées</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Interférence par ARN</term>
<term>Oxydoréduction</term>
<term>Protéines d'algue</term>
<term>Protéines fongiques</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Système de signalisation des MAP kinases</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Programmed cell death plays a critical role during the hypersensitive response in the plant defense system. One of components that triggers it is hydrogen peroxide, which is generated through multiple pathways. One example is proposed to be polyamine oxidation, but direct evidence for this has been limited. In this article, we investigated relationships among polyamine oxidase, hydrogen peroxide, and programmed cell death using a model system constituted of tobacco (Nicotiana tabacum) cultured cell and its elicitor, cryptogein. When cultured cells were treated with cryptogein, programmed cell death occurred with a distinct pattern of DNA degradation. The level of hydrogen peroxide was simultaneously increased, along with polyamine oxidase activity in apoplast. With the same treatment in the presence of alpha-difluoromethyl-Orn, an inhibitor of polyamine biosynthesis, production of hydrogen peroxide was suppressed and programmed cell death did not occur. A gene encoding a tobacco polyamine oxidase that resides in the apoplast was isolated and used to construct RNAi transgenic cell lines. When these lines were treated with cryptogein, polyamines were not degraded but secreted into culture medium and hydrogen peroxide was scarcely produced, with a concomitant suppression of cell death. Activities of mitogen-activated protein kinases (wound- and salicylic acid-induced protein kinases) were also suppressed, indicating that phosphorylation cascade is involved in polyamine oxidation-derived cell death. These results suggest that polyamine oxidase is a key element for the oxidative burst, which is essential for induction of programmed cell death, and that mitogen-activated protein kinase is one of the factors that mediate this pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16844838</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>142</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells.</ArticleTitle>
<Pagination>
<MedlinePgn>193-206</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Programmed cell death plays a critical role during the hypersensitive response in the plant defense system. One of components that triggers it is hydrogen peroxide, which is generated through multiple pathways. One example is proposed to be polyamine oxidation, but direct evidence for this has been limited. In this article, we investigated relationships among polyamine oxidase, hydrogen peroxide, and programmed cell death using a model system constituted of tobacco (Nicotiana tabacum) cultured cell and its elicitor, cryptogein. When cultured cells were treated with cryptogein, programmed cell death occurred with a distinct pattern of DNA degradation. The level of hydrogen peroxide was simultaneously increased, along with polyamine oxidase activity in apoplast. With the same treatment in the presence of alpha-difluoromethyl-Orn, an inhibitor of polyamine biosynthesis, production of hydrogen peroxide was suppressed and programmed cell death did not occur. A gene encoding a tobacco polyamine oxidase that resides in the apoplast was isolated and used to construct RNAi transgenic cell lines. When these lines were treated with cryptogein, polyamines were not degraded but secreted into culture medium and hydrogen peroxide was scarcely produced, with a concomitant suppression of cell death. Activities of mitogen-activated protein kinases (wound- and salicylic acid-induced protein kinases) were also suppressed, indicating that phosphorylation cascade is involved in polyamine oxidation-derived cell death. These results suggest that polyamine oxidase is a key element for the oxidative burst, which is essential for induction of programmed cell death, and that mitogen-activated protein kinase is one of the factors that mediate this pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yoda</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan. h-yoda@bs.naist.jp</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hiroi</LastName>
<ForeName>Yoshinobu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sano</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AB200262</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020418">Algal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016166">Free Radical Scavengers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C061032">cryptogein protein, Phytophthora cryptogea</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.-</RegistryNumber>
<NameOfSubstance UI="D000587">Oxidoreductases Acting on CH-NH Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.5.3.-</RegistryNumber>
<NameOfSubstance UI="C022411">polyamine oxidase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D020928">Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020418" MajorTopicYN="N">Algal Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017209" MajorTopicYN="N">Apoptosis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016166" MajorTopicYN="N">Free Radical Scavengers</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020935" MajorTopicYN="N">MAP Kinase Signaling System</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020928" MajorTopicYN="N">Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000587" MajorTopicYN="N">Oxidoreductases Acting on CH-NH Group Donors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016897" MajorTopicYN="N">Respiratory Burst</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16844838</ArticleId>
<ArticleId IdType="pii">pp.106.080515</ArticleId>
<ArticleId IdType="doi">10.1104/pp.106.080515</ArticleId>
<ArticleId IdType="pmc">PMC1557616</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1996 Sep;10(3):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Dec;218(2):249-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13680232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2001 Jan 5;160(2):197-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11164591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2001 Nov 15;271(1):118-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11697888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Apr;220(6):826-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15517351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9326648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2002 Apr;267(2):154-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11976958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jul;7(7):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):820-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1995 Nov;19(5):800-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8588920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Feb;11(2):273-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Dec;118(4):1213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Dec 13;44(49):16108-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16331971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jul;31(2):137-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):564-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Oct;4(5):392-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Nov;6(11):520-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11756663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23(3):339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Jul 10;70(1):21-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1623521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1995;33:299-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18999963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 1999 Dec;56(11-12):1020-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11212320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Sep;9(9):1559-1572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12237396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):170-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1999 Jan 1;337 ( Pt 1):83-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9854028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 May;9(5):809-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Feb;45(2):160-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14988486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Oct;8(10):1773-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8914325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Jul;111(3):885-891</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Sep;27(6):581-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11576441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Mar;214(5):792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11882949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Mar 6;40(9):2766-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11258887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Nov 18;79(4):583-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:251-275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Apr;119(4):1465-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):230-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 May;42(3):406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15842625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Feb;10(2):255-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9490748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Apr;34(2):149-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12694591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):21-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):516-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Feb;9(2):209-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9061952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1997 Jul 1;11(13):1621-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9224713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Apr;162(1):156-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2440339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Aug;132(4):1973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12913153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(4):367-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1281-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Aug;269(5):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12838412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hiroi, Yoshinobu" sort="Hiroi, Yoshinobu" uniqKey="Hiroi Y" first="Yoshinobu" last="Hiroi">Yoshinobu Hiroi</name>
<name sortKey="Sano, Hiroshi" sort="Sano, Hiroshi" uniqKey="Sano H" first="Hiroshi" last="Sano">Hiroshi Sano</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Yoda, Hiroshi" sort="Yoda, Hiroshi" uniqKey="Yoda H" first="Hiroshi" last="Yoda">Hiroshi Yoda</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16844838
   |texte=   Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16844838" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024